
Int. J. Heat Mass Transfer. Vol. 5, pp. 1069-1080. Pergamon Press 1962. Printed in Great Britain. 

NEW SIMILARITY INTEGRALS IN HEAT AND MASS 

TRANSFER PROCESSES 

A. M. FAINZIL’BER 

Moscow Technological Institute of Light Industry, U.S.S.R. 

(Received 18 December 1961) 

AHHOTlqEII-I3 pa6oTe IIOJIJ’WHbI HOBbIe HIITWpaJbI IIOJJO~I~H B 3a;lauax Tennoo6AleHa 11 
MaCCOO6MeHa. 3TM IIHTWpaJIbI BbIpEUWUOT CO6Od IIO~Ohe BHXpeBbIX, TeMIIepaTJ’pHbIX II 

HoHqewrpaq5IombIx nonea. IIpM 3T0~ pacm~aTpm3amca KaK cnysair HeclfCmaeMoro, Tali 

II C?KEIMaeMOrO rasa, KaK cnyqafi IIOBepXHOCTIIbIX, TaIi 11 O@b@MHbIX peaqnfi. 

NOMENCLATURE 

co-ordinate along the wall surface; 
co-ordinate normal to the wall sur- 
face ; 
velocity component in x-direction; 
velocity component in y-direction; 
stream function; 
concentration; 
absolute temperature; 
stagnation temperature = T + u2/2c,; 
pressure ; 
density; 
dynamic viscosity coefficient; 
kinematic viscosity coefficient = p/p; 
specific heat at constant pressure; 
diffusion coefficient; 
coefficient of thermal conductivity ; 
gas constant; 
Prandtl number = c,pc/h; 
diffusion number = p/pD; 

au ac 
vorticity = 7 - =- ; 

“JJ GX 

rate of a volumetric chemical reaction; 
thermal effect of the reaction; 
relation of activation energy to a gas 
constant; 

2H, channel breadth ; 
A. B, C, K L, M, a, b, m, n, a, a,, ao, al, a,, 
cl and c,, constants. 

Indices 

0, corresponds to the surface in a flow. 
The quantities at the boundary layer are 
barred. 

1. INTRODUCTION 

PATTERNS of viscous-gas or liquid flows accom- 
panied by heterogeneous (surface) or homogene- 
ous (volumetric) chemical reactions are often 
encountered in practice. And hydrodynamic 
factors essentially influence the course of 
chemical reactions since reaction rates depend 
on concentrations which in their turn depend on 
the velocity field. It is evident on the same 
grounds that hydrodynamic factors influence 
heat-transfer processes. Because of this a detailed 
consideration of hydrodynamic, thermodynamic 
and chemical factors becomes essential in a 
number of applied fields. Tn view of the great 
difficulty of integration of the non-linear system 
of partial differential equations which are to be 
considered in this paper, it is very important to 
obtain similarity integrals. A number of new 
similarity integrals of temperature, concentra- 
tion and vortex fields both for a compressible 
and incompressible gas or liquid are obtained 
in this paper. 

2. SIMILARITY INTEGRALS OF VORTEX, 

CONCENTRATlON AND TEMPERATURE FIELDS 

FOR HETEROGENEOUS REACTIONS 

A system of hydrodynamic and diffusion 
equations may be written as : 

1069 
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For the time being compressibility is not taken 
into account in this section and the density p may 
be assumed equal to unity. Generalization for a 
compressible gas will follow below. 

Equations (1) and (2) represent the Navier- 
Stokes equations for a viscous liquid, equation 
(3), an incompressibility condition, and equation 
(4) serves for determining concentrations. 

Note that for gases the diffusion number u is 
assumed equal to unity, and is sufiiciently close 
to reality. 

For the system of equations (l-4) only one 
integral c -2~ au + h is known which is valid 
only for a specific case of a boundary layer on a 
plate and, moreover, connected with the condi- 
tion of constant concentration and, con- 
sequently, with constant chemical reaction rate 
at the surface. 

A new integral is obtained in the present paper 
and has been found to be applicable to a general 
case where a pressure gradient is present (flow 
past a curvilinear profile with a variable con- 
centration at a surface). 

Introduce a new dependent variable 

By virtue of equations (I, 2 and 4) one obtains 
the equation for x 

The following integral corresponds to this 
equation 

or 

x = B 1 const. (7) 

c=Aw+B. (8) 

Integral (8) represents the similarity integral 
of eddy and concentration fields for flow past a 
profile of an arbitrary form. 

Let us elucidate to what boundary conditions 
integral (8) corresponds. For practical applica- 

tions it is most convenient to take advantage of 
a boundary-layer pattern. At the boundary of a 
layer (~2 := m), w :-= 0; c’ = ?, consequently. 
B = 2’. Then according to equation (1) written 
in the form of a boundary layer the boundary 
condition at the surface of a profile for an eddy 
gradient is 

In the considered case of a surface reaction we 
have for the concentration gradient 

Here T(X) is the given function determining the 
law of surface solubility. 

Comparison of equations (8) (9) and (10) 
relates I.(X) to dp/dx as: 

r(s) = 
A dp 

~. 
CL dx 

(11) 

For example, for a gas flow in a plane channel 
(dp/dx = const.) we obtain r(x) :-= const. and, 
since u -= ij(l ~ _r2/H2) (where U is the axial 
velocity), then integral (8) gives 

2A17 (’ i- 
H2 !‘. 

In a similar way the solutions are obtained for 
a gas flow accompanied by a surface reaction 
and, in other cases, for a polygon velocity 
distribution, power velocity distribution, flop 
in a convergent channel etc. 

Let us show that for a specific case of flop 
past a plate we obtain a more general integral 
of equation (6). In this case for equation (1) 
written in the form of a boundary layer it should 
be assumed that dp/dx -= 0. If one compares the 
equations obtained it is possible to get the 
integral : 

x-KufB 

or 

c=Aw+Ku+B. 

At the boundary layer we have 

24 = 21; w=o 

(12) 

(13) 
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and, consequently, 

B = E- Kii. 

Then at the surface we have 

(g),-o; (f&.(x). 
Thus according to equation (13) 

and since u is determined by the known Blasius 
formula in the form 

where f is the known function, then 

where 

a = Kf ‘(0)ii = 0.332 KE 

(14) 

Now we will derive the similarity integrals of 
vortex and temperature fields. It is known that 
in the presence of heat conductance at the surface 
of a profile in a flow the equations for thermo- 
dynamics and hydrodynamics of viscous media 
have an integral of similarity for velocity and 
temperature fields. 

This integral is valid, however, only for a 
flow past a plate and at the constant temperature 
of the surface. In the present paper other inte- 
grals of thermodynamic equations are ob- 
tained and valid both for a flow past a profile 
of an arbitrary form and for a variable surface 
temperature. 

Equations of motion, incompressibility and 
heat balance for a viscous gas flow past a profile 
of an arbitrary form may be written as [1] : 

cp 

X PT 
~ .__ 
P 3Y2 

(16) 

(At first they are given in the form of boundary 
layer equations where compressibility is not 
taken into account; generalization for equations 
in the Navier-Stokes form as well as that for the 
case of compressibility is given below.) Introduce 
the new variable 

S(X; y) = T + 2;- - Aw = t --Au (17) 
P 

where w = &lay is a vortex in the boundary 
layer. 

Having differentiated equation (15) with 
respect to y and having added the equation 
obtained to equation (15), multiplied by u/2, 
and having made some transformations to 
equation (16) we obtained the following equa- 
tion for the function S(x; y) (Pr as usual equals 
unity). 

as as 62s 
u- .+c-_=v, 

ax ay cy2’ (18) 

Since at y = co (at the boundary of a layer) w 
equals zero and for the stagnation temperature 

ii2 
i = T + 2c = i = const. 

P 

the boundary conditions at infinity for the 
variable S is written as: 

S = i = const. at y = co. (19) 

By virtue of equation (15) we get at the surface 
of a profile (at y = 0) 

Let the temperature gradient 
along the surface have the form 

aT 

t 1 avo = r(x) 

(9) 

distribution 

(20) 
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and let 

(11) 

Then for S the boundary condition at the sur- 
face will be: 

‘as r---l - 0. 
aY o- Gu) 

The system of equations (18), (19) and (21) 
may be satisfied by the integral 

If we introduce a relative stagnation tempera- 
ture by the formula 

1i2 
-2 

tz = T i 2c, 

-T-i. 
'17 

and designate the values corresponding to the 
profile surface through tzO, w”, then integral (22) 
may be written in the form: 

(23) 

i.e. we obtain the similarity integral of tem- 
perature and vortex fields. 

For a specific case of a flow around a plate 
(dp/dx = 0) we may get a more general integral 
of equation (17), viz: comparison of equation 
(17) with equation (15) makes it possible to 
obtain the integral 

s == Kll + 8. (22’) 

At the boundary of a layer u =. ii; OJ := 0; 
S = i == const. and, consequently : 

B==- KG. 

Thus, integral (22’) may be rewritten in the 
form : 

S z:- T + i: - Au : i + K(u - Z;). (22”) 
P 

For a heat flow through the surface we get : 

Consider some specific cases : 
(a) Plate in nJ(ow. In this case dpjdx = 0. By 

virtue of equations (20) and (11) it corresponds 
to the condition 

iT 

i i 9 0 
0 (24) 

i.e. a heat flow through a surface is absent. 
According to integral (22) the temperature 
distributioil along the surface has the form: 

Since for a plate the velocity distributioI1 in a 
flow is determined by the formma u = F(J)/\ ‘x), 
then 

/II 

““d.~) \s 

(25) 

and finally we get 

7” -3:: j i_ c 
\ ‘X 

Here C -- A172 is some constant 

From equations (24) and (25) it follows that a 
heat flow through the surface will be absent 
when the temperature is distributed along the 
surface according to formula (25). Note that if 
instead of similarity integral (22), we avail our- 
selves of generalized integral (22’). then we may 
directly obtain a solution corresponding to the 
presence of a heat flow through the surface. 

Since the vortex distribution in a flow is 
cxpresscd by the formula 

then according to equation (22) we find for the 
temperature distribution in a flow 

The function F(y/l/x) entering formula (26) 
represents the known Blasius function. 

(b) Flow in a converging channel. In this case 
for the velocity distribution at the boundary of 
a laver we have 
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and, consequently, for the pressure gradient According to equation (22) the temperature 

dp pC2 
distribution along the surface has the form : 

&=-x3- T,(x) = i + Bx (31) 

According to equations (20) and (11) where B = 1.23 a, d(a,/v)A and is someconstant. 

i‘T 

c-p 1 

AC* 
According to equation (22) the temperature 

iY 0 = ~-~ . 
(27) distribution in a flow is of the form: 

vx” 

Since for a converging channel the velocity 
distribution in a flow is determined by the 
formula 

T(x; Y) = i + Aal 2/(a,/~)xf”[z/(all~)~l 

_ a.‘x2.PW(~,ivlyl 
1 2c, . (32) 

(d) Power velocity distribution. If at the bound- 
ary of a layer there is a power velocity distribu- 
tion, k = axm, then for the pressure gradient we 

then 

dp 

dx 
= - pa2mx2m-1. 

By virtue of equations (20) and (11) we find the 
temperature gradient distribution along the 
surface in the form 

According to equation (22) the temperature 
distribution along the surface has the form 

_ _ a2mX2m-1. (33) 

T,(x) = i - i2 
The velocity distribution in a flow is determined 

(29) by the formula 

where b = 2CA 4(C/3v) and is some constant. 
According to equations (22) and (28) the u= J(ii+[J(;)y] 

temperature distribution in a flow is found with 
the help of the formula where q is the known function. 

For the vortex distribution over the surface we 
find 

(c) Polygonal velocity distribution. For the 
polygonal velocity distribution at the boundary A 
of a layer we have d = a,x. In this case 

ccording to equation (22) the temperature 

dp/dx = - pa:x. By virtue of equations (20) 
distribution along the surface has the form 

and (11) we get for the temperature gradient at T,(x) = j + &(3m--1)‘3 (34) 
the surface where B = aA 4[2a/(m + l)v] q”(0) and is some 

8T 
i ) 

A constant. 
m, ^ = - - a:x. V (30) The temperature distribution in a flow is as 

\‘J,” 
follows : 

Since in the case considered the velocity distribu- 
tion in a flow is determined by the formula 
u = ~,xf’[z/(a~/v)y] wherefis the known function, 

T(x;Y) =i+A,/(&)cI/(;) 

then 

we(x) = a, ~(a,/v)xf”(O) = 1.23 a, l/(a,/v)x. (35) 
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For i?z :- .j the heat flow through the surface 
is constant; for 112 = 4 the temperature along 
the surface is constant; for t12 == -0.0904 the 
temperature along the surface is constant as well 
since calculations show that in this case 
q”(0) = 0. 

Let us generalize the results given for an in- 
compressible viscous liquid flow at arbitrary 
Reynolds numbers (i.e. for the equation of 
motion in the Navier-Stokes form). 

Equations for the temperature and vortices 
may be written in the form [3]: 

(36) 

i,crJ 52 

U i; + 1’ g = p ;; + 7;) ! (37) 

for an incompressible liquid or gas the dissipa- 
tion term is omitted. 

For Pr == 1 we get the integral 

T=Aw$.T. (38) 

This integral takes place when the corresponding 
boundary conditions for the temperature are 
fulfilled. 

Consider some specific cases: 

(e) Liquidflow between two parallel walls. As is 
known, in this case 

dp 
dx = const. 

1 dp L[ _ -2-dx(H2-Y2) 
EL 

I; Z- 0 
1 d/j 

w- ---y. 
pdx 

According to equation (38) we get 

T=“dpy+T, 
CL dx 

The solution corresponds to the constant 
temperature and constant temperature gradient 
along the surface. 

(f) Couette frow. In this case u = my/H; 
u = 0; w = m/H. Due to equation (38) the 
solution corresponds to constant temperature 
according to the formula 

T = T + A(m/H). (40) 

In a similar way the temperature distribution 
may be found for a viscous liquid flow at 
arbitrary Reynolds numbers in a converging 
channel and for other specific cases. 

3. SIMILARITY INTEGRALS OF FRICTION, 

TEMPERATURE AND CONCENTRATION FIELDS 

IN A BOUNDARY LAYER OF A COMPRESSIBLE 

GAS 

If we consider a boundary layer of a com- 
pressible gas on a plate, then for this case in the 
presence of the usual condition Pr = (cpl_~/h) = 1 
two similarity integrals for the stagnation tem- 
perature are known, viz. 

(ii) 
t= 11% 

2c,- f T -= au -t b. 
P 

However, since at the surface in the flow there 
is a boundary condition u = 0, then both 
integrals give T,, = b, i.e. they correspond to a 
constant temperature of the surface. The present 
paper gives new similarity integrals correspond- 
ing indeed to the variable temperature of the 
surface (similarity integral of friction and tem- 
perature fields) and to the variable concentration 
along the surface (similarity integral of friction 
and concentration fields), both the former 
and latter integrals being obtained when the 
gas compressibility is taken into account (earlier 
compressibility was not taken into account). 

A system of hydrodynamic and thermo- 
dynamic equations for the boundary layer of a 
compressible gas on a plate (Pr = 1) may be 
written as : 

(41) 

Let us apply the Dorodnitsyn transformation 
method [4] to the system of equations (4143), 
i.e. let us turn from the independent variables x 
and Y to the independent variables 
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x and 7 = 1; p(x; y) dy_ (44) 

In new variables we get the system of equations 

a+ a%/J 
a?j axaT) (45) 

a# a 

a7 8x (46) 

Assuming, as usual, the linear law of the 
dependence of viscosity on temperature p = aT 
and using the equation of gas state p =p/RT 
we have 

pp = T = const. 

Turning then in equations (45) and (46) to a 
dependent variable $I = $/pp we reduce them 
to the form 

By differentiating equation (47) with respect 
to 9 and introducing the dependent variable 

we get the equation 

a& a7 a+$ a-r 6% 

a7 ax 2x a?) = 2712’ (50) 

Let us clarify the physical meaning of the 
variable 7. Since 

1 + a+ 
u=-;-=:t377 

P CY 

then for 7 we have 

7 = (pp)P a?$ = /.&p 8;$ = flp $ = JL ;;* 

Consequently, T represents the friction stress. 
Comparing equations (50) and (48) we get the 

first integral from the new similarity integrals 

7 = At -+ B. (51) 

This integral represents the condition of 

similarity of the friction stress and friction 
temperature fields in the boundary-layer of a 
compressible gas. 

Since at the boundary of a layer 7 = 0 and 
t = i = const., then B = -Af, i.e. integral (51) 
may be rewritten as: 

7 

-_ = A = const. 
t-t (51’) 

Note that from equation (41) it follows that 
(aTpyy)o = 0. Consequently, equation (51) gives 

i.e. integral (51) corresponds to the absence of 
a heat flow through the surface of a profile in a 
flow. 

On the basis of equation (51’) the temperature 
distribution in a flow is determined by the 
formula 

Here &(x; 71) = ~(x)~(~~, where f = ~/2/x. 
F(t) is determined by the Blasius formula. 

Introducing the variable 5 into formula (52) 
we have 

T = (/.~p)# -& F”(t) - 2;; F”(t)] + i. (52’) 
i 

Since at the surface F’(0) = 0, we get for the 
temperature of a surface 

To = i + ._!!.. 
dx * (53) 

Consequently, similarity integral (51) cor- 
responds to the variable surface temperature. 

Comparing equations (50), (47) and (48) we 
obtain another similarity integral 

(54) 

Since at the boundary of a layer T = 0; 
t = f = const., ~~~1~~ = ~/pp = const., then 



B ::= -Ai - C(rZ/pp) and integral (54) may be 
rewritten as 

7 = A(r - i) t_ 2 (m - 17)” 
tLP 

(55) 

Integral (55) shows that the friction stress is 
expressed by the linear combination of the 
stagnation temperature and velocity drops. 

Owing to the fact that at the surface 
(~‘T/;J’)~ =:- 0 and since (?t/$~)~ --: (iY//i.yf, we 

get 

i.e, integral (55) corresponds to the presence of 
a heat flow through the surface of a profile in a 
f0-W. 

On the basis of equation (55) the temperature 
distribution in a flow is defined by t-be formula 

Substituting &(x; T) for d(x)F(E) we obtain 

and since at the surface F’(0) = 0 we tinaffy get 

that again corresponds to the variable tempera- 
ture distribution along the surface. 

Substituting in formula (56) (&~/Q), for 
(~~/~~x)~~~“(O), we have 

(59) 

Formula (59) determines the temperature 
gradient distribution along the surface. 

Now obtain analogous integrals fur similarity 
of concentration and friction Gelds. 

An equation for concentration c(x: j-1 may be 
written in the form 

Turning from the independent variables x and 
~1 to the independent variables 

x and 71 :-= {I p(x; ,rt) dj, (44) 

we get the equation in new variable5 

Assuming that the diffusion number pj’pl3 -2 1 
and that pp = const., we may reduce the equa- 
tion to the form 

Comparison of equations (62) and (50) gives 
the similarity integral 

7 -_: & i_ L., (63) 

which expresses the condition of similarity of 
the friction stress and concentration fields. 

Since at the boundary of a layer T = 0 and 
c == ? = const., then L = --KC and integral 
(63) may be otherwise written as 

T 
.--_^___ :-__ I( =; const. c . ..- 5 (641 

It follows from equation (41) that (&r/$& .== 0. 
whence we get ~~~~~~~)~ :- 0, i.e. integral (63) 
corresponds to the absence of a heterogeneous 
chemical reaction on the surface of a profile. 
However, if we use the generalized similarity 
integral which will be obtained, below then it 
will correspond to the presence of a heterogene- 
ous reaction at the surface of a profile. To obtain 
this integral we compare equations (62), (50) 
and (47) and we arrive at the similarity integral 

r\ 

T=KC+L+M;$. 
The condition at the boundary of a layer 

(65) 

gives 
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and integral (65) may be written as 

~=K(c-P)iP~(~-~). (64) 

The condition at the surface gives (%/aY),, = 0. 
Consequently, 

‘6c ()- M au 
Ga. 0 

- --.._ .._ c ) KtL P a.v, 0 

i.e. the concentration gradient at the 
differs from 0, and this corresponds 
presence of a heterogeneous reaction. 

surface 
to the 

4. SIMIL~~Y INTEGRALS FOR 
HOMOGENEOUS REACTIONS 

Consider a system of differential equations 
corresponding to a plane steady flow round a 
curvilinear surface. Moreover, chemical reactions 
occur both in the volume of the viscous gas 
(liquid) and at the surface. For convenience of 
consideration we use a usual pattern of a bound- 
ary layer (note that a number of the results 
obtained may be easily generalized in the 
Navier-Stokes form for equations of motion of 
a viscous liquid). Thus we have the following 
system of partial differential equations [5,6]: 

(67) 

(68) 

p and D are usually assumed to be constants; 
below. however, a case will be considered when 
these coefficients are variable; V(c) is the volu- 
metric rate of chemical reaction which, in case 
of an isothermal flow, is a function of concentra- 
tion alone and in the case of a non-isothermal 
flow depends both on concentration and 
temperature (the temperature effect on the 
chemical reaction rate is determined by the 
Arrhenius formula and in future will be taken 
into account); the density p for an incom- 
pressible gas may be assumed equal to unity. 

The boundary conditions for the system of 
equations (69, 70) are well-known. As to the 

boundary conditions for equation (68) they 
depend on the specific chemical conditions of 
the problem and will be considered further. 

In equation (68) let us turn to independent 
variables x, u(x; Y) and to the dependent vari- 
able E = p(au/ay)2 (here E is the energy loss in 
a boundary layer). After the calculation of 
derivatives using equation (69) we come to the 
equation : 

In case u = 1 equation (71) acquires a simpler 
form 

Now transform the system of equations (69, 
70) to new variables. After calculating the 
derivatives in equation (69) and using equation 
(70) we arrive at the equation 

Here T = p(&/aY) = y’(pE) is the friction 
stress. Equation (73) may be rewritten as: 

Thus the solution of the problems on hydro- 
dynamics of a viscous gas in the presence of 
homogeneous reactions is reduced to that of the 
system of equations (71) or (72) and (73) or (74) 
at the corresponding boundary conditions. 

Consider the integration of the system of 
equations (71) and (741, that is consider the 
most general problem of a flow around an 
arbitrary profile for an arbitrary law of a volu- 
metric chemical reaction and for an arbitrary 
number (T. To integrate this system some 
boundary conditions should be given. For 
example, if we assume that the surface is in- 
soluble, that is, that a heterogeneous reaction 
does not take place, then 
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It follows from equation (69) a boundary 
condition for hydrodynamic equation (74) at the 
surface may be written in the form 

= 29 
dx’ 06) 

From equation (71) and from the subsequent 
equations obtained by differentiating equation 
(71) we determine the foliowing values of the 
derivatives at the surface in a Aow (equation 
(74) is used as well): 

Since the coefficients of the powers of c on the 
right-hand side should be constant, then the 
following system of equations is obtained 

dh 
- JZ - a,,; 

dx - 
h(x) ;-; + 2a(x) g == ur; 

, 

d/, 
~- = - w da db 

dx a0 + h(x)n(x) dx -+ dxa”(xf 
I 

. (82) 

The first of these equations gives 

h(x) -^.I -- “L?-y --!- Cl 

the second, 

(77) 

(for a2 = 0). 

and so on. 
The desired solution c(x; p) may be given in 

the form of a series in powers of U, the coefficients 
of which are expressed through the obtained 
values of the derivatives. As to e”(x), then, it is 
determined from the boundary condition 

e(x; ii) = c. (79) 

Now determine at what conditions equation 
(72) will have the similarity integral of the 
velocity and concentration fields. Let us write 
this integral in the form 

The pressure gradient dp/dx and, con- 
sequently, the distribution U(x) is determined 
from the third equation. 

Note that the reaction considered for the rate 
of a volumetric chemical reaction 

V(C) := a0 -;- a,(' + a,t." (83 

is sufficiently general since it generalizes the 
most important and widespread practical cases 
(e.g. for the reaction of the first order 
a0 = a2 = 0, for the reaction of the second order 
cl0 = Q1 = 0). 

fW 

where in accordance with the boundary condi- 
tions 

Now consider the same probiem allowing for 
the effect of temperature on the chemical 
reaction rate. Then, in addition to hydrodynamic 
and diffusion equations we should consider also 
a heat balance equation taking into account the 
heat released during the chemical reaction. 
Thus, we should consider the following system 
of equations (for a reaction of the first order) 

Substituting equation (80) into equation (72) 
we get 

(84) 

c (85) 

(69’) 
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a* 
u=G; 

a* 
’ = - Z (70) 

If the number cpD/h equals unity, then 
equations (84) and (85) have the integral 

T = qc + n. 

This integral represents the similarity 
temperature and concentration fields. 

(86) 

of the 

Substituting equation (86) into equation (84) 
we get the equation (D = p) 

Then expanding exp [ - ,B/(k + n)] in powers 
of c, we may write equation (87) in the form 

When c is small, we may neglect the terms in 
brackets beginning from c2 and, consequently, 
come to, the equation 

s ac afk 
u -i-z + v gy = p ~~~ 

+2 
+ a,c + a2c2 (88) 

where 

B a,=aexp - - ; ( 1 n 
a2 = al% 

n ’ 

If we seek for the solution of equation (88) 
in the form of the similarity integral of the 
concentration and velocity fields : 

c = co(x) + f [? - c,(x)] (80’) 

then by virtue of equation (69’) we shall obtain 
the system of equations (82) (where it should be 
assumed that a,, = 0), from which it follows that 
integral (80’) corresponds to the velocity distribu- 
tion of a potential flow 

and to the distribution of concentrations along 
the surface 

c2 n2 
co(x) = ~- - ~~ ~~~ 

02(X + Cl>" WI' 

Now we shall take into account the effect of 
concentration on viscosity and diffusion co- 
efficients. First we shall confine ourselves to the 
case of a surface reaction and consider a flow 
over a plate; we shall write a system similar to 
the system of equations (68-70) 

In equation (90) going over to the independent 
variables x and u(x; Y) and to the dependent 
variable T = p(c)(au/ay), we obtain the equation 

a27 a P 
-_=__u_. . 

au2 0 ax T 
(91) 

If we take the condition 0 = 1, at which the 
system of equations (89, 90) has the integral 
c = au + b and the power law of the dependence 
of viscosity on concentration p(c) = AP, we 
come to the equation 

72 2 = Au(au + b)n Ex. (92) 

The boundary conditions of equation (92) are 

a7 
t-i au 0 

=o (93) 

‘(x;q =o. (94) 

The solution of the system of equations (92- 
94) may be sought in the form: 

AU3C" 
T= Ji--4 2x a 71(%) (95) 

where u1 = u/Ll is the dimensionless velocity. 
Then we come to an ordinary differential 

equation 

71 gj = - ur(l + mur)” (96) where K = a, -/- 2a,c 
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where nz = (f/c,) -- 1 ; at boundary conditions will be reduced to an ordinary differential 

d7, 
--0 

du, - 

71(l) = 0. 

equation 

(97) CL% 1 - u drl dc 
$.I du2 -+ -;. -. du du L: 0 (100) 

(98) 

The system of equations (96-98) is easily 
which is integrated in quadratures in the form 

integrated with the help of the series. 
(a and /3 are integration constants) 

In an analogous way in equation (91) we may 
use our similarity integrals (8) or (13) of con- 

c = a J ~l(~--lVo du + p. (101) 

centration and vortex fields. The solution will 
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Abstract-In the present work new similarity integrals are obtained in heat and mass transfer prob- 
lems. They represent the similarity of vortex, temperature and concentration fields. Both the case of 
an incompressible and compressible gas and that of surface and volumetric reactions are considered. 

RBsume-Ce travail presente de nouvelles inttgrales semblables pour les problkmes de transport de 
chaleur et de masse. Elles traduisent la similitude des champs de tourbillons, de temperatures et de 
concentrations. Le cas d’un gaz compressible ou incompressible et celui des rtactions superficielles 

et volumiques. 

Zusammenfassung-Fiir W&me- und Stoffiibergangsprobleme liessen sich neue iihnlichkeitsintegrale 
finden. Sie geben die Iihnlichkeit von Wirbel-, Temperatur- und Konzentrationsfeldern. Verschiedene 
Mijglichkeiten wurden beriicksichtigt, nlmlich: inkompressibles und kompressibles Gas, Oberfllchen- 

und Raumreaktionen. 


